#astronomy Ought to We Blame Pulsars for Too A lot Antimatter?

October 15, 2019 - Comment

A brand new examine means that pulsars should not the supply of an surprising surplus of antimatter particles detected by a space-based experiment. Darkish matter stays a viable different clarification. Artist’s illustration of Geminga, a close-by pulsar that has been proposed to be the supply of extra positrons measured at Earth. Nahks TrEhnl The Earth


A brand new examine means that pulsars should not the supply of an surprising surplus of antimatter particles detected by a space-based experiment. Darkish matter stays a viable different clarification.

Artist's illustration of pulsar Geminga

Artist’s illustration of Geminga, a close-by pulsar that has been proposed to be the supply of extra positrons measured at Earth.
Nahks TrEhnl

The Earth is continually being bombarded by cosmic rays — excessive vitality protons and atomic nuclei that pace via house at almost the pace of sunshine. The place do these energetic particles come from? A brand new examine examines whether or not pulsars are the supply of 1 explicit cosmic-ray conundrum.

An Extra of Positrons

Cosmic ray shower (art)

Artist’s impression of the bathe of particles brought about when a cosmic ray hits Earth’s higher ambiance.
J. Yang / NSF

In 2008, our efforts to grasp the origin of cosmic rays hit a snag: knowledge from a detector referred to as PAMELA confirmed that extra high-energy positrons have been reaching Earth in cosmic rays than concept predicted.

Positrons — the antimatter counterpart to electrons — are considered primarily produced by high-energy protons scattering off of particles inside our galaxy. These interactions ought to produce reducing numbers of positrons at greater energies — but the information from PAMELA and different experiments present that positron numbers as an alternative go up with growing vitality.

One thing should be producing these further high-energy positrons — however what?

Clues from Gamma-rays

One of many main theories is that the surplus positrons are produced by close by pulsars — quickly rotating, magnetized neutron stars. We all know that pulsars steadily spin slower and slower over time, shedding energy as they spew a stream of high-energy electrons and positrons into the encompassing interstellar medium. If the pulsar is shut sufficient to us, positrons produced in and round pulsars would possibly make it to Earth earlier than shedding vitality to interactions as they journey.

HAWC's pulsar observations

Observations from the Excessive-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory present TeV nebulae round pulsars Geminga and PSR B0656+14. However do these sources even have prolonged GeV nebulae that would supply extra direct constraints on positron density?
John Pretz

Might close by pulsars produce sufficient positrons — and will they diffuse out from the pulsars effectively sufficient — to account for the high-energy extra we observe right here at Earth? A crew of scientists now addresses these questions in a brand new publication led by Shao-Qiang Xi (Nanjing College and Chinese language Academy of Sciences).

To check whether or not pulsars are accountable for the positrons we see, Xi and collaborators argue that we must always search for GeV emission round candidate sources. Because the pulsar-produced positrons diffuse outward, they need to scatter off of infrared and optical background photons within the surrounding area. This may create a nebula of high-energy emission across the pulsars that glows at 10–500 GeV — detectable by observatories just like the Fermi Gamma-ray Area Telescope.

Two Pulsars Get an Alibi

Gamma ray counts

Fermi LAT gamma-ray rely map (high) and residuals after the background is subtracted (backside) for the area containing Geminga and PSR B0656+14.
Tailored from Xi et al. 2019

Xi and collaborators rigorously analyze 10 years of Fermi LAT observations for 2 close by pulsars which have been recognized as possible candidates for the positron extra: Geminga and PSR B0656+14, situated roughly 800 and 900 light-years away from us.

The end result? They discover no proof of prolonged GeV emission round these sources. The authors’ higher limits on emission from Geminga and PSR B0656+14 give these objects an alibi, suggesting that pulsars can possible account for under a small fraction of the positron extra we observe.

So the place does this depart us? If pulsars are cleared, we might want to look to different candidate sources of high-energy positrons: both different close by cosmic accelerators like supernova remnants, or extra unique explanations, just like the annihilation or decay of high-energy darkish matter.

Quotation
“GeV Observations of the Prolonged Pulsar Wind Nebulae Constrain the Pulsar Interpretations of the Cosmic-Ray Positron Extra,” Shao-Qiang Xi et al 2019 ApJ 878 104. doi:10.3847/1538-4357/ab20c9

This submit initially appeared on AAS Nova, which options analysis highlights from the journals of the American Astronomical Society.



Supply hyperlink

Comments

Comments are disabled for this post.